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ABSTRACT

This report investigates three techniques for segmenting
cloud cover images into regions of homogeneous cloud type.
Two of these techniques select thresholds based on an analysis
of the edge strengths of the borders of the above-threshold
connected components (or of the coldest such component). The

; third technique selects thresholds based on cluster analysis
of the infrared histogram, combined with a statistical featureanalysis of the clusters in the image domain.
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1. Introduction

This report investigates three techniques for s ,j-

mentinq cloud cover images:

1) Segmentation by selection of thresholds based on

analysis of the average border edge strength of

the coldest connected component.

2) Segmentation by selection of thresholds based on

analysis of average border edge strengths of all

connected components.

3) Segmentation by selection of temperature interval

clusters based on a cluster analysis of the infra-

red histogram combiiied with a statistical feature

analysis of the clusters in the image domain.

A description of the data set for the segmentation study

in this teport is presented in Section 2. A comparison

of thresholds suggested by analysis of average border edge

strength of the coldest connected component with thresholds

suggested by analysis of average border edge strength is

the subject of Section 3. Average border edge strength

was calculated by applying the Roberts gradient operator to

the infrared image data. Average border edge strength

features were calculated in Section 4 by applying th-ee

different edge operators. Threshold selection results were

comp!,red for all three edge operators. Section 5 approaches

the segmentation problem in terms of clustering analysis

rather than edge analysis. reatures in the infrared image



domain were then calculated on the clusters to identify and/or

merge the clusters into cloud type and/or cloud layer objects.

Section 6 describes a test of the cluster analysis approach

on a data base of 107 cloud cover windows.



1 r
2. Data Set

The data samples selected for the segmeitation study

presented in this report consist of the first twelve

samples of Data Set li (described in [1]). The large size

infrared windows of Data Set IlI (64x64 arrays of infrared

picture points) were used for each of the segmentation tech-

niques. Twelve visible windows (64x32 arrays of visible

picture points) correspondipg to the central portions of the

twelve large size infrared wind,..is were used for conly one

of the segmentation techniques -- cluster analysis based on

a visible brightness feature (Section 5). Visible bright-

ness features were calculated from each of the visible win-

dows in an atte, pt to classify cluster cloud type. Analysis

of cluster cloud type based on an infrared edge strength

feature is also discussed in Section 5.

The twelve data samples consist of three samples of

"cumulonimbus" cloud type, fuur samples of "low" cloud

type, and five samples of "mix" cloud type. )ne of the "low"

saqples, Samplk P:;7-er 5, in this sample set for the pilot

segmenttiton study contains primarily middle clouds. One

of the "mix" samples, Sample Number 4, contains dense cirrus

produced by vigorous deep convection, whereas the other four

"mix" samples, Sample Numbers 3-11, were selected from re-

gions in which there were no neighboring "cumulonimbus"

samples. The geographical location (see Figures I and ? nf

[1]) and classification for each of the twelve samples are

given in Table 1.



3. Connected Component Analysis

__ For each of the twelve samples, the 64x64 array of

infrared temperature readings was contoured for every tem.-

perature threshold Ti occurring in the sample into sets of

connected components Ci,...,C.. Each connected component
I 1m *

Cil,... ,Cim i consisted only of points with infrared temper-

ature readings colder than Ti . A set of contiguous infra-

red picture points Cir was defined as a connected component

for a given temperature threshold Ti if all points contained

in Cir had infrared temperature readings greater than Ti

(i.e., colder) and for any two points p and q in C ir, there

existed a path of points in Cir between p and q such that

each point along the path was either horizontally, verti-

cally, or diagonally adjacent to the preceding point along

the path. A point of a connected component Cir was said to

be a border point of Cir if at least one of its vertical or

horizontal neighbors had an infrared temperature reading

less than or equal to Ti. An example of the set of connec-

ted components corresponding to a temperature threshold of

132 for a 4x6 array of infrared plcztre points is shown

below. Border points for each component are underlined.

137 142 144 143

138 147 156 16,5 COMPONENT 1

132 14? 147 159

118 121 124 132

117 119 129 13 COMPONENT 2

124 127 ]I 1A4



A detailed discussion of the concepts of a-cency and

connectelness can be found in Rosenfeld and Kak [2].

The purpose of the experiments in this section was to

assess the value of isolating, labeling, and computing bor-

der edge strength for each of the spati'lly distinct connec-

ted components whose temperature readings fell within the

same range. It was assumed that, if each coonected compon-

ent for a given threshold represented a distinct area of

cloud-type data, the border edge strength for a particular

connected component might be more indicative of an appro-

priate threshold value than the border edge strength aver-

aged over all the connected components. The particular

connected component which was of primary interest was the

connected component containing the coldest temperature

reading. In the case of "cumuionimbis" samples., this com-

nonent would represent the cloud-t-pe area (or object) in

which the most vigorous convection was occurring. In the

case of "mix" samples consistinc of thin cirrus mixed with

low clouds, this component would probably best represent

the thin cirrus portion of the sample. Figures 1-i2

illustrate the difference for each threshold value between

border edge strength values for the component containing

the coldest temperature (solid line graph) and the border

ed::e strength averaged over all connected components

(dotted graph).

The edge ctrength operator used to determine border

I edge strength was the Roberts gradient. For any 2x2 array



of points A , the value of the edge strength at point A

was defined as

max(IA-DI, IC-B ).

The edge strength of a connected component Cir was then

calculated as the sum of the edge values for all border

points of C ir divided by the number of border points of

C ir. The border edge strength for all components corres-

ponding to a given threshold Ti was calculated by finding

the sum of edge values for all border points of the connec-

ted components associated witi Ti and then dividing by the

total number of border points.

An analysis of tMe graphs in Figures 1-3 for

"cumulonimbus" samples reveals that it is very difficult to

s-,lect a temperature threshold to contour the cumulonimbus

portion of the sample either by examining the pattern of

edge strength values for the connected component containing

the coldest temperature or the pattern of edge strength

values averaged over all connected components. For Figures

1-3. en atteirfo was made by looking at the graphs ana

the edge st-.ength data from which the graphs were drawn to

find the best temnerature threshold for separating the cumu-

lonimbus portion of the sample from the cirrus and low cloud

port)Dn by scanning the cold temperature po: ion (right-hand

side of the graphs) for either hi-gh edge strength values or

sharp increases in edge strength values from warmer to

colder temperatures.



In Figure 1, there was only one connected component

for infrared readings from 166 to 205. The edge strength

values generally decreased throughout this range. No

specific threshold could be found from the graph for

separating the cumulonimbus portion of Sample Number 1

(shown in Figure 1) from the cirrus portion.

The situation was somewhat different for Figure 2.

Although total edge strength values decreased in general

over a range of temperature thresholds from 175 to 204,

the edge strength value for the component containing the

coldest temperature jumped from a value of 7.75 for a tem-

perature threshold of 192 to 14.14 for a temperature

threshold of 193. Between the temperature thresholds of

192 and 193, the connected component containing the coldest

temperature was split from a component with 56 border

points into two components, one containing 32 border points

and the other 21 border points. The connected component

for threshold 193 with 21 bord4r points was the one which

contained the coldest temperature and which represented

that portion of the larger connected component obtained for

threshold 192 around which there was a sharp edge. Con-

sidering the picture in its entirety, it was very doubtful

if all points with infrared readings colder than 193 would

have becn more representative of the cumulonimbus portion

of the sample than all points with infrared readings

colder than 192. This sample was also chosen to illustrate

one of the major problems of using border edge strength to



define -loud-type objects. Many cloud components (such as

cumulonimbus) had a sharp temperature gradient on only one

particular portion of the border of the component with

very weak temperature gradients between, for example, the

cumulonimbus portion and the anvil purtion. Values for the

border edge strength feature for a temperature threshold

which contoured a cumulonimbus component of a sample window

of satellite data would be considerably wearened by the

presence of weak gradients between the borders of the cumu-

lonimbus and cirrus portions of the sample.

Looking at the cold temperature end of the scale in

Figure 3, one can see an increase in component edge

strength value between infrared readings 187 and 183 and

in total edge strength be'veen 192, 193, and 194. Between

the temperature thresholds of 187 and 188, the component

containing the coldest temperature was sharply split. The

connected component with the coldest temperature for

threshold 187 had 276 border points whereas, after the

split, the connected component with the coldest temperature

for threshold 188 had 88 border points, meaning that two

totally different cloud objects were being compared. The

increase in total edge strength between 192, 193, and 194,

however, seemed to correspond to an appropriate threshold

for contouring the cumulonimbus portion of the sample. It

was hoped that more sophisticated edge operators for cal-

culating total border edge strength could find temperature

thresholds for contouring the cumulonimbus portions of



Samples Nos.l and : (shown in Figures I and 2, respec-

tively).

For the "low" cloud samples, Figures 5-7 and 12.

only minor differences between edge strength ",4!'ies for the

component containing the coldest temperature and total edge

strength values can be found. Figure b. representing

middle nlouds, is interesting because its almost perfect

bell-chape suggests that the middle cloud portion of the

sample can be isolated by selecting a threshold value near

the peak of the bell-shaped curve, i.e., about 83. Figures

6, 7, and 12 reveal that, in general, tor "low"

clouds one expects low edge strength values. Higher edge

values occurred primarily only for temperature thresholds

where the number of border points around connected compon-

ents was fewer than ten (see Figure 6, temperature

thresholds 81 to 85). The statistical significance of a

border edge strength feature based on such a small number

of points is doubtful.

In sharp contrast to the low edge strength values for

"low" clouds, the "mix" cloud samples, Figures 4 and

8-11, reveal high edge values with a break in the

pattorn of total border edge strength near an infrared

reading of 100 (corresponding to a temperature of about

280°K). In Figure 4, the upward slope of the edge

strength curve for the "low" cloud portion (left-hand side

of the qraph) seems to begin to level off near a temper-

ature threshold of 100. The same break can be seer in



Fig.res 8, 10, and 11 and to a lasser extent in

Figure 9 The "mix" samples in Figurts 8-11 maintain-

ed, in general, high edge strength values throughout th*

entire infrared range above 100 in contrast to the cumu-

lonimbus sample, of figures 1-3 for which edge strength

values decreased for high (cold) infrared readi;igs. In

Figure 4, there was a slight decrease in edge strength

values for temperature thresholds 175 to 180. However,

edge values for the coldest temperature thresholds for the

"mix" sample of Figure 4 did not drop as low as edge

values for the coldest temperature thresholds of the "cumu-

lonimbus" samples of Figures 1-3.

In conclusion, total edge strength values for all

border points seemed to better discern thresholds for

separating cumulonimbus portions of sample windows than

edge strength values of particular components. In some

cases, changes in the pattern of the total border edge

strength feature with increasing infrared threshold cort'es-

ponded to temperatures which appeared to physically contour

distinct :loud-type regions. In other cases, no informa-

tion could be obtained from the graphs of total border

edge strength feature for threshold selection. The failure

of the total border edge strength feature to segment these

sample windows could be attributed either to a definition

of edge strength which was not appropriate for meteorologic-

al data or to the inability of border edge strength

features, in general, to contour cloud objects. The edge

strength operators described in the next section were de-



signed to investigate the feasibility of using a total

border edge strength feature to select appropriate

thresholds for cloud-type objects.

I
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4. Border Edge Strength Analysis

For each of the three edge operators designed for the

experiments in this section, edge strength, EDGE(P), at a

point P was defined as a function of the infrared temper-

ature values of P and of its four vertical and horizontal

neighbors., If the four neighbors of P are given by

A
B P C and the infrared temperatures for points A, B, C, D,

D

and P are given respectively by ATo BT, CT , DT , and PTs

then the edge strength at point P for each of the three

edge operators is given by:

1) Minimum Edge Operator

EDGE(P) = PT - minimum (AT, BT, CT, DT)

2) Average Edge Operator

EDGE(P) = PT - average (AT, BT, CT, DT)

3) Directional Edge Operator

EDGE(P) = PT - minimum (average(A T s DT), average(B T , CT))

Major differences between the three edge operators can be

seen by comparing the edge strength values determined by

each of the three edge operators on sample cloud-type

objects. Let us first consider the sample object below

- 134

130 134 138

- 134

which illustrates a ramp edge in the vertical direction.

The edge strength values for the three edge operators at



the center point are respectively 4, 0, and 0. From this

example, one can see that the minimum edge operator has

high values for a situation in which there is either change

within a cloud pattern or a ramp edge between two cloud

patterns. The average edge operator and the directional

edge operator detect step edges such as the step edge in

the vertical direction illustrated below

- 134 -

130 134 134

- 134 -

In this case, the edge strength values at the center point

for the minimum edge operator, average edge operator, and

directional edge operator are 4, 1, and 2, respectively.

Note that the edge strength values calculated by the mini-

mum edge operator were the same for both examples. One

would expect high edge values for the minimum edge operator

along both step edges a.d ramp edges betwee" cloud patterns

and also within cloud patterns in which there wvere large

temperature variations. The average edge operator and the

directional edge operator have very low values for ramp

edges and high values for step edges. Edge strength values

for the average edge operator for situations in which there

is either a vertical or horizontal edge tend to be diluted

by the temperature values of the horizontal or vertical

neighbors, respectively. Note that for the step edge ex-

ample, the edge strength value for the directional operator'

was higher than the edge strength value for the average



edge operator.

The edge strength value for a given temperature

threshold Ti was defined as the average edge strength over

all points P such that the infrared temperature reading of

P was greater than Ti and at least one of the infrared tem-

perature readings ATo BTo CT, or DT of the horizontal and

vertical neighbors of P was less than or equal to Ti . This

definition corresponds to the definition of the total edge

strength feature presented in the previous section. The

edge strength values for each of the three edge operators

defined in this section can be compared with the edge

strength values calculated from the Roberts gradient which

appeared as dotted line graphs in Figures 1-12. Edge

strength values obtained by applying the minimum edge

operator, average edge operator, and directional edge oper-

ator to Sample Numbers 1-12 are plotted in Figures

13-24, Figures 25-36, and Figures 37-48, respectively.

Edge strength values for the first sample, which was

classified as "cumulonimbus", can be found in Figures 1,

13, 25, and 37. Both the Roberts qradient technique

(Figure 1) and the minimum, edge technique (Figure 13)

result in high edge values within cloud patterns with

rapidly varying temperature profiles. In Figures I and

13, low edge strength values occur only for sea surface

and/or low cloud portions and for the dense cumulonimbus

portions. The cumulonimbus portion could be assumed to

correspond to a pattern of relatively uniform or decreasing



edge strength values at the cold end of the infrared scale.

Looking at Figures I and 13, one would expect that a

good temperature threshold for the cumulonimbus portion

might be eitter 195, 190, 185, or 180. Fr-om Figures ?t

and 37, representing average edge strength values and

directional edge strength values respectively, the best

threshold for contouring a uniform block of cold temper-

atures appears to be 190. The entrance from a temperature-

varying transition zone into a cloud object with relatively

uniform temperatures can be detected at lower threshold

value by average or directional edge strength operators

which are functions at any given border point of an objec;

of points which are both interior and exterior to the

object.

From an analysis of the graphs in Figures 2, 14,

26, and 38 for Sample Number 2, the threshold for con-

touring the cumuloninbus portion might be selected at

either 185, 190, or 195. Referring to the raw picture data

and the component analysis, one can determine that the

infrared readings between 185 and 189 are nct necessarily

associated with the compact cumulonimbus portion of the

sample but appear to be streaming off from the cumulonimbus

portion and are probably part of the anvil. The temper-

ature threshold of 190 was probably the best of the above

three choices for segmentation of the cumulonimbus portion.

The choice of threshold value for the curmulonimbus

portion of Sample Number 3 could not be exactly determined

either from the graphs of Figures 3, 15, 27, and



39, or from the raw picture data. The best threshold

seemed to be between 190 and 195. The change .n threshold

from 190 to 195 produced only minor differences in bound-

ary of the largest connected component. The boundaries of

many cloud-type objects are blurrea because each infrared

reading (from the instantaneous field of view of the

satellite sensor) represents a weighted average of cloud-

type blocks and "no cloud" blocks. The difficulty in de-

termining an actual cloud object boundary for the cumu-

lonimbus pnrtion could be attributed both to this "smearing"

effect atid to the fact that the edge strength operators

could not adequately distinguish transition zones between

two cloud patterns from variable-temperature cloud objects.

Whenever the operators saw varying temperature profiles,

they treated them as instances of edges.

The edge strength values of "mix" Sample Number 4,

which are plotted in Figures 4, 16, 28, and 40,

failed to show a sudden downturn at the cold end of the

temperature scale as was seen for the previous three

"cumulonimbus" samples. In both Figures 28 and 40,

there is very little change in magnitude between the edge

strength values around 155 or 160 and those at the cold

end of the scale. The edge strength values at the end of

the scale in Sample Number 4 are larger than those for the

cumulonimbus portions of Sample Numbers 1-3.

Sample Number 5, with edge strength values indicated

on Figures 5, 17, 29, and 41, is the best example

in the pilot study of the use of a peak in edge strength



values to locate a boundary of a cloud object. The peak of

the curves (which occurs at approximately a threshold of

90) corresponds to the mid-point of a transition zone or

ramp edge between a block of relatively uniform sea sur-

face data probably mixed with some lower cloud and a block

of relatively uniform middle cloud data. In all four pre-

vious examples, the peaks in edge strength values corres-

ponded to temperatures within cloud objects with rapidly-

varying temperature profiles.

The graphs for Sample Numbers 6 and 7, which are

give respectively by Figures 6, 18, 30, and 42

and by Figures 7, 19, 31, and 43, illustrate that

low clouds in general have low edge strength values. Edge

strength values for low clouds calculated o-, visible data

would probably have furnished a more definitive indication

of a threshold between sea surface and low cloud data than

can be found from chese graphs. A temperature threshold

of 75 seems to be the approximate point which separates

cloud data from "no cloud" data for these two samples.

Note that before a threshold of 75 (see Figures 18 and

19), the edge strength values showed a gradual upturn,

probably indicating a change to a variable-temperature

cloud object frGm a uniform sea surface.

The edge strength values for the "mix" samples,

Numbers 8-11, are given in Figures 8, 20, 32, and

44, Figures 9, 21, 33, and 45, Figures 10, 22,

34, and 36, and Figures 11, 23, 35, and 47. The

edge strength values are higher than those for



samples in the "low" and "cumulonimbus" classes and do not

significantly taper off at the cold end of the temperature

scale. The directionil edge strength values are higher

than the corresponding average edge strenoth values. This

is, however, not the result of an edge in a particular

direction but instead r~flects a greater variability in the

vertical direction thar: in the horizontal direction within

a cloud-type pattern. The difference in directional

.ariability can be attributed primarily to the difference

between the vertical resolution of 4 miles and the hori-

zontal resolution of 2 miles.

Sample Number 12, a "low" cloud sample, offers an in-

teresting insight into a comparison of the four edge tech-

niques for contouring a cloud-type object. The Roberts

gradient edge strength values (Figure 12) petk at

thresholdsof 73 and 76 respectively, suggesting that an

appropriate threshold for separation of sea surface and low

cloud data would lie in this interval. The edge strength

values for the average edge operator and the directional

edge operator, given in Figures 36 and 48 respectively,

peaked at the much colder reading of 84. The digitized

cloud data in Sample Number 12 consisted of one connected

component shaped approximately as shown below

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXX
XXXXXXXXXX
XXXXXXXXXX
XXXkXXXXXXX



with sea surface temperatures relatively uniform and the

temperatures within the cloud highly variable especially

along the vertical direction. For the border points, the

Roberts gradient and the minimum edge operator correctly

detected a difference between the points and the exterior

sea surface temperatures. The directional edge operator,

however, looked primarily at the difference between the

border point and the average of its horiiontal neighbors

which tended to be within the component. The average of

the horizontal neighbors was lower than the Pverac.e of the

vertical neighbors because of the extreme variability with-

in the cloud-type object. For this example, the peaks pro-

duced by the Roberts gradient and minimum edge strength

operator corresponded to appropriate thresholds for con-

touring the clou, data.

The precedivig analysis of the pilot samples in this

study shows that the selection of thresholds to isolate

physically significant temperature intervals based on edge

strength values required human judgrient coupled with feed-

back between edne strength values and the digitized

meteorological satellite data. No particular edge strength

operator seemed consistently superior to others. In gen-

eral, the directional operator seomed best for separation

of a cloud object of relatively uniform temperatures from

a temperature-varying transition zone (for example, sevar-

ation of cumulonimbus from cirrus by observation of a

downturn in edge strength values or uniformly low edge

strength values at the cold end of the temperature scale).



The minimum edge operator seemed best for separation of a

cloud object containing rapidly-varying temperatures from

a uniform backgrotind (for example, low cloud from sea sur-

face by observation of the peak on an upturn in edge

strength values at the warm end of the temperature scale).

A threshold for separation of low cloud data froin cirrus

cloud data could not be easily selected from the graphs of

edge strengti values for any of the four techniques.

Selection of temperature contours which represent

cloud-type objects need not be based on the spatial dis-

trib*;tion of the infrared readings but can be approached

from an analysis of the infrared histogram. The next sec-

tion reports on the results of application of a cluster

technique due to W. D. Fisher to the infrared nistogra to

determine clusters ot temperature iitervals corresponairg

to cloud-type layers.



5. Histogram Cluster Analysis

The most significant difference between the W.D. Fisher

algorithm for clustering ordered sets of data points and

other typical clustering algorithms is that "globally"

optimal partitions of the data are obtained by dynamic

programming procedures, rather than "'locally" optimal par-

titions by iterative optimization procedures. The applica-

tion of dynamic programming procedures in a clustering 
al-

gorithm is feasible only when sufficient mathematical 
con-

straints are introduced to significantly reduce the number

of possible partitions which tust be examined at 
each step

of the clustering algorithm. The number of partitions of

M objects into K clusters is given by

1 K)K-i M which is approximately K This

number can be reduced from O(K 
M ) to O(MK ) by requiring

each cluster to correspond to an interval of temperature

values and can be further reduced by selection 
of an error

criterion that is additive over clusters. 
Since an error

function is calculated for each allowable partition, 
no

initial starting values for cluster membership are required

by the Fisher algorithm.

The form of the error function and the maximum number

KMAX of clueters desired must be specified by the user of

the Fisher algorithm. The programs used in this section

represent adaptations of basic programs for the Fisher al-

gorithm which appear in Hartigan (3] on pp. 141-142. The

error function for a partition of M objects 
into K clusters



was defined in terms of the cluster sum of squared devia-

tions diameter. Let P(M,K) denote the partition of M

ordered objects 1,2,...,M into K clusters given by

( I , f l , . , 2 -1 ) , ( 1 , 2 I . . 1 - ) . . ( I + I t,. ..,M )

where 1- = 1 and I = M+l, and let D(I,J), I z I s J M ,

denote the cluster diameter given by

J
O(I,J) = J JX(L) -

L=I

J
where X = I X(L)

L=I

J-I+l

Then the error e[P(M,K)] associated with the partition

P(M,K) is given by

K
e[P(M,K)] = I D(IJIJ+lI).J=1

There are four basic steps in the algorithm. The

first step is to compute the diameters D(I,J) for all I,J

such that I - I s J & M. Note that D(I,I) = 0 for all I.

The second step is to compute the errors e[P(I,2)] for all

parititions of I objects, I I s M into 2 clusters. The

optimal partition P(I,2) of I objects into 2 clusters is

the partition which minimizes over all J, 2 A J 9 I, the

sum

D(l,J-l) + D(J,I).

Store in a matrix B of size MxKMAX' for each value of I,



the lower boundary of the second cluster for the optimal

partition P(1,2) as B(I,2) and save the value of e[P(I,2)].

For the third step, the errors for the opti.al partitions

of I objects into K clusters where 3 s K 1 KMAX can then be

obtained by finding the partition which minimizes over all

J, 2 s J - 1, the quantity

e[P(J-l,K-l)] + D(J,I).

Store the value of J which corresponds to the lower boundary

,f the Kth cluster of each optimal partition P(I,K) in the

matrix B as B(I,K). Then for step 4, one can discover the

optimal partition of M objects into K clusters P(M,K) for

any value of K, K s KMAX' by backtrackirg as follows. The

Kth cluster consists of the objects ranging from B(M,K) to

M. The (K-l)st cluster consists of objects ranging from

B(B(M,K)-I, K-l) to B(M,K) - 1, etc.

The definition of cluster diameter as a sum of squared

deviations arises from the assumption that each of the

clusters consists of independent observations drawn from a

normal density. The statistical model for the partition

P(M,K) into the K clusters

0( 9iIi+l,...,I 2- 1), 0I29,I2+I .. , 3- ) . . ( K',I K I . .

is that the observations X(l), X(2),...,X(12 -1) are indepen-

dent observations from the normal density

f(XIe l ) - exp(-f(X-O 1 )
2)/v; the observations W(2),X(12+1),

...,(13-1) are independent observations from the normal

density f(Xlo 2) exp(-. (X-O 2 )//,r; and so on, up to

2)f



X(IK), X(IK+l),...,X(M) which are assumed to be independent

observations from the normal density

f(XIoK) = exp(- .(X-OK)2 )// n. If the cluster diameter

D(I,J) is defined as above, then the sum of the cluster

diameters is the same as the negative of the maximum log

likelihood of tie observations. Minimizing this sum (by

use of an additive error criterion) means that those

clusters have been found which make the given observations

most probable. Detailed discussions of maximum likelihood

estimrition and relationships between various density

functions and cluster diameters can be found in Duda and

Hart [4 ] and Hartigan [3].

Theoreticai models ,'lich apply to determination of

the number of modes or clusters in the data are also pre-

sented in Hartigan [3 ]. If one assumes that the observa-

tions are normal and that the K+l clusters of the optimal

partition P(M,K+l) are obtaiied by splitting one of the K

clusters of P(M,K) in two (which, however, usually is not

the case), then the mean square ratio MSQ where

MSQ = (M-K-1)(e[P(MK) 1
e[P(MK+l)]

is distributed as F,M.K. . A large value of the mean

square ratio means that K+! clusters are necessary. A

graph of the errors of optimal K partitions against values

of K can also be used to select the best value of K. The

correct number of clusters K is that number for which the

decrease in error from the optimal (K-1) - partition to



the optimal K-partition is most noticeable.

The selection of the parameter KMAX and the selection

of the value of K for isolation of a cloud-type object con-

sisting of the coldest temperatures in each sample of

meteorological satellite data were based primarily on con-

vergence properties of the values in the last (coldest)

cluster as the number of clusters increased, on expected

size of the standard deviation for cumulonimbus clusters,

and on comparison of the objects isolated by the clustering

algorithm for various values of K with stereoscopic views

of the samples at two consecutive time periods, rather

than on analysis of the sum of squares (error function) or

the mean square ratio. Sharp decreases in the values of

the sum of squares generally occurred as the number of

clusters increased from 2 to 3 or 3 to 4 (primarily for

cumuloninit, ts samples). No local peak was observed in

values of the mean square ratio which would indicate that

a particular value of K was to be preferred. Both these

measures proved of little value in locating the mode of the

narrow temperature range at the cold end of the scale which

corresponded to a cumuloniwbus rloud object.

it was found, experimentally, that in order to isolate

the cumulonimbus portion of the "cumulonimbus" samples, a

value of at least 10 had to be selected for KMAX. The

parameter KMAX can be compared to the cluster size para-

meters of those clustering algorithms for which the number

of desired clusters is not specified by the user. For ex-

ample, in the discussion of the ISODATA routine of Endlich



et al. [5 ], the maximum allowable radius of a cluster was

a function of a parameter called the sphere factor which

was selected as 0.7 to yield 10-15 clusters per grid area.

If the splitting and lumping options of the ISODATA routine

were used, one or more additional parameter values had to

be chosen by the user. For the Fisher algorithm, a large

value of the parameter KMAX was necessary in order to isolate

clusters consisting of a narrow range of cold temperature

values. Large values of K tended to break both the low

cloud portion and the cirrus :loud portion of "cumulonimbus"

samples into many clusters. The criteria used in this

study for merging these clusters were based on expected

temperature signatures. Various other criteria based on

cloud-type characteristics need to be examined.

Although optimal partitions were obtained for each

value of K from 1 to 10, a value of K=9 was selected as

that value which best described the cumulonimbus portion of

"cumulonimbus" samples. The infrared histograms for each

of the twelve samples in the pilot study are shown in

Figures 49-60. The lower boundary of the ninth cluster

(for K=9) is marked on each of the histograms. Descrip-

tions of the coldest of nine clusters for each of the pilot

samples appear in Table 2. From the entries in the

column of partition sizes, one can observe that, for each

sample in the pilot study, as the value of K was increased,

there was a sequence of optimal partitions of length at

least 2 which yielded the same coldest cluster. This

sequence included the value of K-9 for every sample. This



type of stability or convergence of the observations which

comprised the coldest of nine clusters did not occur, in

general, in the case of "cumulonimbus" and "mix" samples,

for clusters other than the coldest cluster for any values

of K which were examined.

The statistical properties of the coldest of nine

clusters for "cumulonimbus" samples were of the order of

magnitude that would be expected for cloud objects consist-

ing only of "cumulonimbus" data points. For example, the

cloud-type signatures for cumulonimbus samples derived by

Greaves and Chang [6 ] for Nimbus 2 data consisted of a

mean temperature of 224°K and a standard deviation of 6.40 K.

Converting the mean and standard deviation of infrared

observations into temperature values by use of the calibra-

tion table found in Table 1 of [1], one can see that

the mean temperatures of the coldest of nine clusters for

"cumulonimbus" samples 1-3 ranged from approximately 213'K

to 222°K with standard deviations approximately 5°K. Choos-

ing a cluster size for the three "cumulonimbus" samples in

the pilot study which decreased the lower boundary of the

coldest of nine clusters for K-9 by more than two counts

(infrared observations) resulted in standard deviations of

6.5, 7.5, and 8.2, respectively, which seemed too large.

Note from Table 2 tlat the value of the standard devia-

tion for the ninth cluster varied with cloud type. For

"low" cloud samples 5-7 and 12, the standard deviation

values ranged from 1.51 to 1.95. For "cumulonimbus"

samples 1-3, the standard deviations ranged from 4.01 to

k.



4.32. Higher values, ranging from 4.67 to 7.14, character-

ized the coldest of nine clusters of "mix" samples. The

cluster standard deviation is correlated to the cluster

edge per unit area feature which was successfully used to

classify cluster cloud type (see Section 6).

The tiird consideration which prompted a choice of K=9

for the number of clusters to isolate the cumulonimbus por-

tion of "cumulonimbus" samples was a comparison between the

outlines of the coldest cluster for various values of

K z 10 with the stereoscopic projection of the two consecu-

tive infrared satellite photographs of the original data.

The pictures of the data (reproduced in Figures 2 and 4 of

llJ) were displayed under a mirror stereoscope and aligned

by hand in the approximate direction of upper level wind

flow until a position was reached which seemed to best

segregate layers of cloud motion. The outlines of the

coldest clusters for values of K=9 approximately coincided

with outlines of cumulonimbus layers which lay on the same

level (as seen under the mirror stereoscope). Pictures of

"cumulonimbus" samples 1-3 and outlines of the cumulonimbus

portion of the samples which were obtained by selecting

the coldest of nine clusters are included in Section A

(see Figure 64). The points with infrared readings in the

range delineated by the coldest cluster for K=9 appear as

solid white in the segmented pictures of the "cumulonimbus"

samples.

Another interesting comparison can be made between the

range of observations included in the coldest clusters for



"cumulonimbus" samples 1-3 and the pattern of edge strength

values at the right-hand side of the graphs of Figures 37-

39. For "cumulonimbus" samples 1 and , both the cluster

analysis and the edge strength analysis indicate a change

in cloud-type pattern occurring near a threshold of 190.

For Sample Number 3, the edge strength analysis indicates

the possibility of a higher threshold -- perhaps about

195 -- and the cluster analysis indicates a change in

pattern at about 198 for values of K from 7 to 10 and 196

for values of K from 5 to 6. A threshold lower than 195

produced small regions which did not seem to physically re-

late to the main cumulonimbus cloud component observed in

the picture data.

Since no segmentation of "low" cloud samples was de-

sired, it was not necessary to apply the more expensive

cluster analysis procedures to "low" cloud samples if they

could be identified by statistical clessification techni-

ques. For example, from Experiment Number 2 of Table 30 in F7],

we can see that maximum likelihood classification on the

design set using only one feature -- coldest temperature

value in the samFle -- correctly identified 95.4% of the

"low" cloud samples. An efficient procedure for "lo4"

cloud classification would be to utilize temperature

thresholds derived either from labdlled samples or from

knowledge of the three-dimensional temperature structure of

the atmosphere at the given geographical location to

isolatp "low" clouds. For the samples in the pilot study,

it was decided to classify all samples for which the



maximum infrared reading was less than or equal to 100

(i.e., coldest temperature in the sample was 2800K) as

"low" cloud samples.

The coldest temperature feature can also be used to

identify "mix" cloud samples containing dense cirrus in

which the coldest temperature is too warm for "cumulonimbus"

samples. The percentage of "mix" samples correctly classi-

fied using the coldest temperature feature was approxima-

tely 71% in Experiment Number 2, Table 30 of [7]. A range of

temperatures for a given geographical area can be specified

for isolating "mix" samples. For the experiments in this

section, all samples for which the coldest infrared reading

in the sample fell within the range from 150 to 170 (i.e.,

coldest temperature value in the sample lay between 255°K

and 245 0 K) were classified as "mix". Note from Table 9 of [7]

that for the coldest temperature feature (Number 303), the

mean value for "cumulonimbus" samples was approximately

46 which corresponds to a temperature of 206°K (160+46)

with a standard deviation of approximat-ly 19°K. It is

very unlikely that the coldest temperature values for

"cumulonimbus" samples would lie in tne range between

245 0 K-2550 K for latitudes between the equator and 12.5°N.

The decision procedure for classification of the

samples in the pilot study is presented in Figure 61. At

the first stage of the decision tree, all samples of

meteorological satellite data in which the maximum-infrared

reading is less than or equal to 100, i.e., coldest tem-

perature 22800 K, are classified as "low" clouds. The



Fisher clustering algorithm for a value of K=9 is then

applied to all other samples. At the second stage of the

decision tree, the samples are divided into sanmples which

may be either "low" or "mix", "mix" samples, and samples

which may be either "mix" or "cumulonimbus". The criterion

used to separate the samples at this stage consists of de-

termining two thresholds on the temperature line. For the

experiments in this section and in the next chapter,

threshold values of 150 (corresponding to approximately

255 0 K) and 170 (corresponding to approximately 245°K) were

selected. Samples for which the maximum infrared reading

lay between 100 and 150 were tested at the third stage of

the decision procedure to determine if they were "low" or

"mix" samples. Samples for which the maximum infrared

reading was greater than 170 were tested at the third stage

of the decision procedure to determine if they were "mix"

or "cumulonimbus" samples. Samples for which the maximum

infrared reading lay between 150 and 170 were classified as

"mix" samples.

The tests applied at the third stage of the decision

procedure consisted of calculating feature values for the

coldest of the nine clusters and using these feature

values to classify the sample. Various different features

could be applied. Two features that were examined were a

visible brightness feature and an infrared cluster edge

strength feature. One would expect from previous experi-

ments that the visible brig- tness feature would be appro-

priate for separation of "cumulonirbus" and "mix" samples



but might not be as useful for separation of "low" and "mix"

samples (see Fisher distance values for Feature Number 113

in Table 18 of L7]). The cluster eage strengtn feature, which

is correlated to the standard deviation and mean texture

features for the diagonal directions (see, for example,

Fisher distance values for Feature Number 302 of Table 19 of 17]

and Feature Numbers 323 and 324 of Table 24 of [7]), would be

expected to separate both "low" from "mix" samples and

"mix" from "cumulonimbus" samples.

At the fourth stage of the decision procedure,

clusters were merged together using a temperature threshold

value to determine low cloud segments and cirrus cloud

segments. The cumulonimbus cloud segment of samples which

were classified as "cumulonimbus" at the third stage of

the decision procedLre consisted of the coldest cluster.

The low cloud segment was obtained by merging together all

clusters for which the minimum infrared observation within

the cluster was less than or equal to 100. The cirrus

cloud segment was obtained by merging together all clusters

(except the coldest cluster for "cumulonimbus" samples)

for which the minimum infrared observation within the

cluster was greater than 100.

Two different algorithms for classification of cloud

samples at the third stage of the decision procedure

(Figure 61) -- one based on a visible brightness feature

and one based on a cluster edge strength feature -- are

formulated in Figures 62 and 63, respectively. Classi-

fication in both of the algorithms result- from comparisons



of the mean of a feature value calculated on points in the

coldest cluster with one or more means of the same feature

value calculated on points lying within a middle range of

temperature values and points lying within a low range of

temperature values. The temperature values of the points

within the middle range suggest that the cloud type of

these points is probably either cirrus or cirrus mixed with

lower clouds. The temperature values of the points within

the low range are indicative of low cloud types. Thus,

the classification scheme of both algorithms depends on

comparison of feature values of the coldest cluster with

feature values of known cloua types within the same sample

rather than on a threshold of feature values.

A threshold scheme could have been used for classifi-

cation. For example, one could have said that if the edge

strength feature of the coldest cluster for samples with a

maximum infrared reading above 170 was greater than a given

threshold value ET, the sample would be classified as

"mix" instead of "cumulonimbus"; or, if the visible bright-

ne'ss feature of the coldest cluster was greater than a

given value VT, the sample would be classified as "cumulonim-

bus" instead of "mix". Similar thresholds could have been

determined for samples for which the maximum infrared read-

ing lay between 100 and 150. For these samples, one would

expect that the values of both the visible brightness

feature and the cluster edge strength feature would be

higher for "mix" samples than for "low" samples. One can

deduce appropriate threshold values by looking at the

'V



spread of feature values given in Table 3.

The comparison of feature values for the coldest

cluster with feature values Oithin the same sample for

points whose infrared readings fell within the middle

and/or low ranges was independent of choice of threshold

value. This type of algorithm was pursued, rather than

classification algorithms based on thresholds which would

probably not have been valid for all samples over a wide

geographical area. The middle and low ranges were selected

so that the difference between the maximum and minimum in-

frared reading within each of these ra,.ges would be the

same as the difference between the maximum and minimum in-

frared reading within the coldest cluster. This criterion

was particularly important for the computation of the mean

cluster edge strength feature.

The mean cluster edge strength feature was defined in

terms of the Roberts gradient values for each point. The

value of the Roberts gradient at a point A in the upper
AB

left-hand corner of a 2x2 array of points D was defined

as

max(IA-DI, IC-BI).

The cluster edge strength feature for a set of points was

defined as the mean value of the Roberts gradient for all

points within the set.

The visible brightness feature of a set of points was

defined as the mean value of the brightness reading for

Q11 points in the set for which visible data was available.



The Fisher clustering algorithm was applied to the first

twelve samples of the large size infrared windows of Data

Set III. The resolution of these infrared windows was 2

miles in the horizontal and 4 miles in the vertical. The

visible windows corresponding to this set (i.e., same cen-

ter point as infrared windows) had a resolution of 2 miles

in both the horizontal and vertical directions. Consequently,

for all data points lying in the upper fourth and lower

fourth of each infrared window, there was no corresponding

visible data. This means that the analysis using the

visible brightness feature was limited to the small size

64x32 infrared windows of Data Set III.

A comparisot\ of the classification results for

"cumulonimbus" samples using both the visible brightness

feature and the cluster edge strength feature can be made

by referring to Table 3. Both algorithms correctly

classified the first three samples as "cumulonimbus". The

visible brightness feature for the coldest clusters of all

three- samples was greater than the visible brightness

featurk ?or the sets of points comprising the middle range

sets. Values 'or the cluster edge strength feature of the

coldest clustcr differed to a greater extent from edge

st rength values for sets of points in the middle range than

edge strength values for sets of points in the low range.

For the "cumulonimbus" samples, cluster edge strength

valuet for sets of points in the middle range were uniformly

higher than cluster edge strength values for the coldest

civster and for sets of points in the low range.



The same decision procedure and classification al-

gorithms that were applied to the "cumulonimbus" samples

were applied to "mix" samples Numbers 4, 8, 9, and 10.

The maximum infrared reading in these "mix" samples was

greater than 170. The visiule brightness feature algorithm

incorrectly classified "mix" samples Numbers 4 and 10, as

is"cunulonimbus" whereas the cluster edge strength feature

algorithm correctly identified them as "mix". Note that

although the visible brightness features calculated on the

coldest cluster of these two samples were higher than the

visible brightness features calculated on sets of points in

the middle range, the values for the coldest cluster for

both samples were lower than corresponding values for the

"cumulonimbus" samples. The difference was so slight, how-

ever, especially in the case of Sample Number 4, that one

would hesitate to adopt a threshold method on the visible

brightness feature values to distinguish "cumulonimbus"

from "mix" samples. No visible data was available for

"mix" Sample Number 9 since the coldest cluster lay en-

tirely in the upper fourth of the large size infrared win-

dow. "Mix" Sample Number 8, in contrast to Samples Numbers

4 and 10, was correctly classified by the visible bright-

ness feature algorithm. All the "mix" samples in the

pilot study were correctly classified by the decision pro-

cedure of Figure 61 combined with the cluster edge

strength feature algorithm of Figure 63. The cluster edge

strength feature values for the coldest cluster were

markedly similar to cluster edge strength feature values



for the set o points in the middle range -- indicating that

the coldest cluster of "mix" samples should be merged into

those clusters which were contained in the set of points

comprising the middle range.

Classification of the "mix" Sample Number 11, and

"low" samples Numbers 6, 7, and 12, was done on the basis

of the value of the coldest temperature (maximum infrared

reading) within the sample. Following the decision pro-

cedure of Figure 61, the "mix" Sample Number 11 was

classified as "mix" since the maximum infrared reading in

the sample (a value of 158) lay between the values of 150

and 170. "Low" samples Numbers 6, 7, and 12 were classi-

fied as "low" since the maximum infrared reading in the

sample was )ess than 100.

The only s,-ple in the pilot study which travelled

down the branch of the decision procedure for samples with

maximum infrared reading between 100 and 150 was "low"

Sample Number 5. This sample consisted primarily of middle

clouds. From the values of the visible brightness features

and cluster edge strength features, one wouid guess that

middle clouds are, in general, brighter and denser than

lower clouds. No distinction was made in this study be-

tween middle clouds and low clouds. Since the major pur-

pose of this study was to isolate temperature layers suit-

able for upper level wind estimates, middle clouds were

grouped together with low clouds into a "low" class. The

cluster edge strength feature algorithm classified Sample

Number 5 a: "low" since the coldest portion of the sample



exhibited the same dense effect (lack of edge variation

within the cluster) as one would expect for low clouds.

The visible brightness feature algorithm expected the cold-

est portion of a "mix" sample to be brighter than the cold-

est portion of a "low" sample, and thus classified Sample

Number 5 as "mix".

The classification and segmentation performance of the

Fisher clustering algorithm combined with the cluster edge

strength feature algorithm was superior to that of all the

segmentation techniques which were developed in this section

and applied to the twelve samples in the pilot study.

This combination of the decision procedure of Figure 61

with the algorithm of Figure 63 formed the cluster edge

strength model. A more extensive test of this model was

conducted on the large size infrared windows of Data Set

III. The results of this test are presented in the next

section.



6. ExDerinental Evaluation of Cluster Edae Strength

The cluster edge strength model for automatic cloud

classification and segmentation was tested on the 107 large

size infrared windows of Data Set III (described in

L1]. Classification results for each sample are shown in

Table 4. Pictures of the original and segmented sample

windows appear in Figures 64-70. The cluster edge

strength model resulted in cloud sample segmentation by

cloud type (low, cirrus, and cumulonimbus) and cloud sample

classification results which were consistently superior to

those obtained by statistical classification techniques.

The number of test samples correctly classified by the

cluster edge strength model was 102. The maximum number of

test samples (107 small size windows of Data Set 111)

correctly classified by any of the experiments in Chapter

IV using statistical classification techniques and visible

and infrared features was 87. The maAimum number of test

samples (107 large size windows of Data Set III) correctly

classified using statistical classification techniques and

infrared features only was 70. These comparative results

demonstrate the superiority of the cluster tdge strength

model for automatic cloud classification and segmentation.



6.1 Classification Results

The 107 large size infrared test samples of Data Set

III consisted of 44 samples of "low" cloud, 30 samples of

"mix" cloud, and 33 samples of "cumulonimbus" cloud. The

geographical region from which the test samples were selected

contained a high percentage of upper-level cloud types; how-

ever, there was no test sample which contained only cirrus

clouds. Within a test sample cirrus clouds occurred either

in combination with cumulonimbus clouds (in which case the

sample was labeled by meteorologists as "cumulonimbus") or

in combination with lower clouds (in which case the sample

was labeled as "mix").

Statistical classification techniques were used to

classify 37 of the 107 samples onl the basis of maximum

(coldest) infrared reading within the sample. Since the

maximum infrared reading of 33 of the samples was less than

or equal to 100, these samples travelled down the left-hand

side of the cluster edge strength model decision tree

(Figure 61) at Stage 1 and were accordingly classified as

"low". Cluster analysis techniques were applied to the re-

mainder of the 74 samples. Four of these samples -- those

with maximum infrared reading between 150 and 170 -- travelled

down the central branch of the cluster edge strength model

decision tree at Stage 2 and were classified as "mix".

At Stage 3 of the decision procedure, cluster edge

strength features were calculated for each of the 26 test

samples with maximum infrared reading between 100 and 150

and for each of the 44 test samples with maximum infrared



reading greater than 170. The procedure for defining tem-

perature interval clusters within there samples and for

classifying the samples by comparing edge strength feature

values on the specified temperature interval clusters is

summarized in Figure 63. The cluster edge strength

feature values obtained using this algorithm can be found in

Table 4. The cluster edge strength decision procedure clas-

sification for each sample and the meteorological (cloud-

truth) classification are also presented in Table 4.

It can be seen from Table 4 that 5 of the 107 test

samples -- Sample Numbers 19, 59, 73, 79, 91 -- were mis-

classified. For the first four samples, the misclassifiza-

tion seemed to result from the fact that sample points in

the coldest cluster were few in number and located too

close to the border to obtain a statistically representative

edge strength feature value of the cloud pattern in which

the coldest cluster was embedded. For Sample Numbers 19, 59,

and 79, the cumulonimbus portions of the samples existed

only either near the right-hand border of the sample (Sample

Numbers 19 and 59) or near the top of the border (Sample

Number 79). The coldest cluster in Sample Number 73 con-

sisted only of a few points near the top of the border of

the sample. Comparison of edge strength feature values be-

tween the coldest cluster and the low range cluster led to

the misclassification of the sample as "mix" instead of

"low". There was no obvious explanation for the mis-

classification of Sample Number 91.

i



6.2 Segmentation Results

The sample image data and sample segmentatior, results

obtained from the cluster edge strength model decision pro-

cedure are shown in Figures 64-70. These figures contain

the original and segmented images for Sample Numbers 1-16,

17-32, 33-48, 49-64, 65-80, 81-96, and 97-107, respectively.

Images made from the original digitized test data appear on

the left-hand side of each figure and the segmented images

on the right-hand side of each figure. The sample test

windows are arranged within each picture in row-major order.

That is, in Figure 64,Sample Number 1 is in row 1, column

1; Sample Number 2 is in row 1, column 2;...; Sample Number

5 is in row 2, column 1;...; and Sample Number 16 is in

row 4, column 4.

A re-scaling of the infrared gray scale had to be

applied to the original digitized image data in order to

create the pictures shown on the left-hand side of Figures

64-70. The minimum infrared reading within any of the

107 large size infrared test windows was 55 and the maximum

infrared reading was 211. The picture output dcvice could

record a maximum of 64 gray levels. In order to retain

maximum possible resolution for display of the upper end of

the infrared scale (cold end), each infrared gray level

value I was transformed into a corresponding integer output

value G as follows:

G - 0, for I < 92

G - entier(1--), for I - 92
2



where entier(x) greatcst integer less than or equal to x.

Consequently, the warmer portions of low-level clouds appear

uniformly dark in the picture display of Figures 64-70.

The original digitized sample data can also be seen in pic-

ture form in Figure 2 of II i. rihe latiLude and 1onoitude of the

center point of each of the test samples is given in Table 3 of

[Il]. However, even when overlaying a latitude-lonflitude

grid on the digitized sample data, it is difficult to ex-

actly locate each sample window and, in particular, to

judge the areal extent of each window. The problem is

further complicated by differences in resolution between Figure

2 of Li] (4x4 n.mi. resolution) and the infrared digitized

data (2x4 n.mi. resolution). The pictures in Figures 64-

7(0 show the exact test sample windows on which the cluster

edge strength model was evaluated. The pictures in

[1]were invaluable aids for determining cloud-truth

classification and for examining cloud layer motion diff-

urences.

In order to evaluate the segmentation results, two

questions must be asked:

1) Did the segmentation results lead to correct

classification results?

2) Do the segmentation results correspond to known

cloud type and/or cloud motion layers within the

sample?

The classification results were discussed in the previous

section of this chapter and tabulated in Table 4. The



segmentation results appear in pictorial form in Figures

64-70.

Looking at the segmented sample windows on the right-

hand side in Figures 64-70, the sample classification can

be determined from the number of colors in the sample. If

white, gray, and black segments appear in the sample, the

sample was classified as "cumulonimbus". The white seg-

ments represent the cumulonimbus portions of the sample de-

termined by the cluster edge strength model decision pro-

cedure, the gray segments are the cirrus portions, and the

black segments are the low cloud portions. If there are

only gray and black segments in the sample, the sample was

classified as "mix". All sample windows which appear

uniformly black were classified as "low". Five samples were

misclassified -- Sample Number 19 in row 1, column 3 of

Figure 65; Sample Number 59 in row 3, column 3 of Figure

67; Sample Number 73 in row 3, column 1 of Figure 68;

Sample Number 79 in row 4, column 3 of Figure 68; and

Sample Number 91 in row 3, column 3 of Figuri 69. The

misclassification of the first four samples is due to

proximity of coldest cluster poitnts to sample borders, as

can be verified by examining the picture windows above.

Quantitative evaluation of the quality of automatic

segmentation results requires precise "a priori" meteorolo-

gical locaticn of segmentation boundaries. Lucation of

appropriate segmentation boundaries for cloud type and/or

cloud motion layers in sample windows of meteorological

satellite data often demands contextual and motion informa-



tion which is not visually available upon inspection of the

original sample window data. According to Hubert 81,

"the analyst decides on cloud type by first determining the

synoptic situation... Once the synoptic situation is deter-

mined, observations of cloud characteristics and cloud

motion aid the analyst in segregating cloud layers and in

specifying cloud types." Information from many different

sources (whether satellite- or ground-based) must be merged

and geographically registered in order to outline segmenta-

tion boundaries. If the time-consuming and tedious pro-

cedure of manually outlining segmentation boundaries is to

result in sufficiently precise boundaries for the quantita-

tive assessment of the quality of automatic segmentation

results, then further refinements in techniques for identi-

fying and registering borders of cloud segments within

sample windows with cloud motion borders deduced from

analyses of animated cloud motion data must be developed.

Although a quantitative evaluation of the segmentation

results was not feasible, a qualitative evaluation was

possible and was used to direct the development of segmen-

tation techniques. With the aid of a satellite meteorolo-

gist, information from digital computer output, from pic-

tures of original sample windows in Figures 64-70, from

visual and infrared photographs at two consecutive time

periods (see Figures 1-4 of LIJ) examined under a mirror

stereoscope, and from film loops was used to assess the

cloud-type and/or clouo motion layer configurations in

individual samples.



7. Summary and Conclusions

Three segmentation models were developed. Each of

the models assumed that cloud-type objects were character-

ized by nun-overlapping temperature interval layers. The

first model defined cloud-type objects as connected com-

ponents with sharp gradients along the border. The second

model characterized nonuniform cloud-type situations as

multiple cloud layers with unique temperature structures

separated by sharp edge gradients between borders of cloud

layers and/or sea surface. The third model assumed tha"

cloud layers would appear as clusters in infrared histograms.

Cloud-type thresholds in the first model were

selected from an analysis of the change in average border

edge strength of the connected component containing the

maximum (coldest) infrared reading as the temperature con-

tour of the component was varied. Average border edge

strength -oas calculated using a Roberts gradient operator.

The model proved too sensitive to artificial changes in

average border edge strength resulting either from splitting

of a connected component into two parts or from an insufficient

number of border points for computation of an average border

edge strength feature.

The second segmentation model differed from the first

-with respect to the method of calculation of average border

edge strength feature and operators used to define the edge

at border points. The average border edge strength feature

for a particular threshold (temperature contour) was

obtained by averaging the edge strength values over border



points of all connected components, not just the connected

component containing the coldest infrared reading. Three

edge operators -- a minimum edge operator, an average edge

operator, and a directional edge operator -- were designed

to detect changes between cloud layers. In general, the

directional edge operator seemed best for separation of a

cloud layer consisting of relatively uniform temperatures

from a temperature-varying transition zone, and the minimum

edge operator seemed best for separation of a cloud layer

containing rapidly-varying temperatures from a homogeneous

background. The problem of threshold selection on the basis

of the average border edge strength feature was complicated

by the fact that steep border gradients on one side of a

cloud object were sometimes weakened by fuzzy gradients on

another side, with the resultant average border edge strength

feature being of the same magnitude as gradients existing

within cloud objects.

The third model based segmentation decisions on an

examination of clusters in the infrared histogram and

features (visible or infrared) extracted from the clusters.

Both a visible brightness feature and an edge strength per

unit area feature were vsed to determine whether or not a

cluster represented a distinct cloud object or should be

merged with other clusters to form a cloud-type object.

The incorporation of statistical pattern recognition techni-

ques with this segmentation model to identify the cloud

type of cloud objects formed the cluster edge strength

model.



The cluster edge strength model combined statistical

pattern recngnition techniques with the segmentation tech-

niques of the third segmentation model above. The radiative

properties of cloud types were used to classify samples with

typical "low" and "mix" temperature profiles. Specific

thresholds could be derived either from radiative transfer

models, from labeled design samples, or from experience.

Cluster analysis to identify cloud-type segments was applied

to all samples except those which were classified as "low"

based on maximum (coldest) infrared reading. Edge strength

per unit area averaged over all cloud data with temperatures

in the interval defined by the coldest cluster was compared

with edge strength per unit area for specific temperature

intervals of comparable width. The comparison resulted in

cloud-type classification and segmentation of windows of

satellite data.

The cluster edge strength model demonstrated consis-

tent superiority to statistical pattern recognition models

for classification of meteorological satellite data both in

terms of classification accuracy a::. practicality. The

tedious preparation of % labeled set of design samples was

not required to obtain decision boundaries. The cluster

-edge strength model used only infrared data (thus simulating

night-time conditions), two features (maximum infrared read-

ing and segment edge strength per unit area), and a compu-

tationally effic'ent clustering technique to achieve a

classificatior accuracy of 95%. Statistical pattern recog-



4nition models achieved a maximum classification accuracy on

independent data of 81% using both visual and infrared

features and 65% using only infrared features.

The incorporation of image segmentation techniques

intn operational cloud classification systems for preprocess-

ing meteorological satellite data is strongly recommended.

The cluster edge strength model is one example of a model

that merges both statistical pattern recognition techniques

and image segmentation techniques to identify complex cloud-

type conditions. Similar models could be developed for

specification of cloud and surface conditions from meteorolo-

gical satellite data in various spectral regions.

9



References

[1] J. A. Parikh, "Cloud classification: experimental
evaluation", Computer Science Center, Univ. of Maryland,
College Park, Technical Report 514, March 1977.

[2] A. Rosenfeld and A. C. Kak, Digital Picture Processing.
New York: Academic Press, 1976.

[3] J. A. Hartigan, Clustering Algorithms. New York:
John Wiley & Sons, 1975.

[4] R. 0. Duda and P. E. Hart, Pattern Classification and
Scene Analysis. New York: John Wiley & Sons, 1973.

[5] R. M. Endlich, D. E. Wolf, D. J. Hall, and A. E. Brain,
"Use of a pattern recognition technique for determining
cloud motions from sequences of satellite photographs",
Journal of Applied Meteorology, vol. 10, no. 1, pp. 105-
117, February 1971.

[6] J. R. Greaves and D. T. Chang, "Technique development
to permit optimum use of satellite radiation data",
Goddard Space Flight Center, Greenbelt, MD, Final Re-
port on NASA Contract N62306-69-C-0227, May 1970.

[7] J. A. Parikh, "Cloud pattern classification from visible
and infrared data", Computer Science Center, Univ. of
Maryland, College Park, Technical Report 442, February
1976.

[8] L. F. Hubert, "Techniques for deriving winds from
cloud movement", Proceedings of the Nineteenth Annual
Meeting of the American Astronautical Society, Dallas,
TX, June 19-21, 1973.



Figures 1-12

Comparison of border edge strength feature
values of Samples Nos. 1-12 for coldest
connected component (solid curve) and for
all connected components (dotted curve)
using Roberts gradient operator.
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Figures 13-24

Border edge strength feature values of SamplesNoas. 1-12 for all connected components using
minimum edge operator.
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Figures 25-36

Border edge strength feature values of Samples
Nos. 1 12 for all connected components using
average edge operator.
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Figures 37-48

Border edge strength feature values of Samples
Nos. 1-12 for all connected components using
directional edge operator.
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Ffqures 49-60

Infrared histograms for Saxples
Mos. 1-12, with coldest cluster
threshold marked.
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Define:

CHAX M aximum IR Reading in
Coldest of Mine Clusters

C Nib- Minimum IR Reading in
Coldest of Nine Clu;ters

From visible data, calculate a mean
brightness feature. VColdest Cluster' for all

points in sample with infrared readings be-
tween C.MI and CHAX for which vf'ible data is

I available.

100 <CAX 15 C- > 170

Zefine: Define:

L fCHIm- 1, if CIm 100 . CKII" .f CKIN6 1 5 0

1AX 100, otherwise MAX C150, otherwise 1

KIN  MAX-(CMAX CIN) HMi N MiX- (CHAX-CKIN)

From visible data, calculate a Fro= visible data, calculate a

mean brightness feature, mean brightness feature,
VLow Ranqe' for all points in VMiddle Range' for all points

sample &ith infrared readings in sample with infrared readings

between L.IN and LKAX for which between NM IN and MMAX for which

visible data is available. visible data is available.

I ii ! i~u

If VColdest Cluster > YLow Range' if YColdest Cluster > VMiddle Range'

classify sample as *mix'; If classify sample as "cuculonimbus",

VColdest Cluster s VLow Range' if V Coldest Cluster & VMiddle Range'
classify sample as *low'. classify sample as 'nix'.

Figure 52. Algorithm for Classificatlc. of Cloud
Samples at Stage 3 of Decision Pro-
cedure given in Figure 61 Using Visible
Brightness Feature.



M (A * - 4 9mus IR Reading 1 15

Loldest of Nine Clusters

!t C: - miniwu IR Reading in
Coldest of Nitne Clusters

fus 'fr3,ed data. facvulate a Sean cluster edge strength
featurea Ecoldest Cluster* for all points In Siample with
infrared eJdiigs betuetnn and CAX

'MPAX * ICM 1 1 If Cp l 5O

IS3. otherwist

fro red data, Calculate a sean cluster edge strength
feature, E Mddle ft . for all points In saple withIrfrartd reading%-betwee4 X N  and 014AI"

It CX' .l If C m i 16 1ang

aMAs 10I. otherwse

Lcasif LsAXl |Cs Aw Cs CRa
Fran farrtd data. calculate a sees cluster edge strength

feature.E Low least. fcr all points in Sa le with afred a

readings bttwees LF1Ni dld LanAa
tC qO Ck -Cx I SO CMAI 3, 170 t

it [Coldest Cluster 3. [LoV *Buet* lif oCw Range sEidt **le
Clsify Stale as *iixf. Ctsamwlse. andclalsstfy sample as *law" 1E Co~ldest Clvster'E Low Range'

* f

A. ttid4 la Range -[Cold @st

Cluster classify sample as.€cuoluibasO, If
E Lv tons* ), [middle leaste and

[Coldest Cluster 'L [Middle
Range. classify Sample as
cuulonibus*. Cther"s.

€laSSIe; $&apt# as "~'

Figvr# 63 Algorithm for Classification of Cloud
SampleS at Stage 3 of Decision Pro-
Cedure given i Figure 61 USial Cluster
Edge Strength Vatvre



Figure 64 Original and Segmented Images
for Sample Numbers 1-16.

Figure 65. original and Segmented Images
for Sample Numbers 17-32.



Figure 6' Orignal and Segmented Images for
Sample Numbers 33-48.

Figure 6 Original and segmented images
for Sample Numbers 49-64.



Figure 6- Original and Segmented Images

for Sample Numbers 65-80.

Figure 69 Oni qinal and Segmented 1ndge%
of ?ample Numbers 81-96.



Figure V Original and Segm~ented Imaqes

for Sample Numbers 97-107.



SAMPLE CLOUD TYPE GEOGRAPHICAL LOCATION*
NUMBER CLASSIFICATION LATITUDE, LONGITUDE

1 Cumulonlimbus 12.5N., 122.5W

2 Cumulonimbus 12.5N, 117.54,
3 Cumulonimbus 12.5N, 112.5W

4 Mix 12.5N, 107.5W

5 Low (Middle) 12.5N, 102.514
6 Low 12.5N, 97.5W
7 Low 12.5N, 9-1.5W4
8 Mix 12.5N, 82.514
9 Mix 12.5N. 77.5W

10 Mix 12.5N. 67.5W
11 Mix 12.5N, 62.5W

12 Low 12.5N. 57.5W

'Geographical location of the center point of the data
samples can be used to locate the data samples in the
visible and infrared satellite images of Figures]1
and 2 of (1).

Table 1. Classification and Location
of Data Samples for Pilot
Segmentation Study.



SAMPLE DESCRIPTION OF COLDEST OF NINE CLUSTERS OF INFRARED HISTOGRAM

NUDBER OBSERVATIONS IMEAN j STANDARD DEVIATION PARTITION SIZES*

1 190-206 199.35 4.32 9,10

2 190-205 196.87 4.14 9,10

3 198-211 205.34 4.01 7,8,9,10

4 159-184 170.27 7.14 8,9

5 97-102 99.93 1.51 8,9

6 80-86 82.27 1.95 9,10

7 80-86 82.30 1.58 7,8,9

8 165-181 172.36 4.67 8,9,10

9 168-184 175.38 4.88 9,10

10 150-176 158.19 6.23 9,10

11 135-158 141.30 5.50 9,10

12 85-90 86.86 1.68 7,8,9

*The partition sizes correspond to those values of
K a 10 (the number of clusters) for which the coldest
cluster was identical to the coldest cluster for A-9.

Table 2. Analysis of Coldest Cluster of Data
Samples for Pilot Segmentation Study
Where Number of Clusters K=9.
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Pattern recognition Thresholding
Image processing Edge detection
-Scene analysis Clustering
Segmentation,

US. Se*C? - - "-This report investi:-
gates three techniques for segmenting cloud cover images-into re-
cions of homogeneous-cloud type Two of these techniques select
thresholds based on an analysis-of the edge strengths of the bor-
ders of the above-threshold connected components (or of the-
coldest such 0~pnet. The third technique selects threshold*
based on cluster .analysis of the Infrare4 histogram, ccabined-with-
a statisticrAL feature analysis of tke clusters -in the-mgdoan


